'Plotly: How to highlight weekends without looping through the dataset?
I am trying to plot three different timeseries dataframes (each around 60000 records) using plotly, while highlighting weekends (and workhours) with a different background color.
Is there a way to do it without looping through the whole dataset as mentioned in this solution. While this method might work, the performance can be poor on large datasets
Solution 1:[1]
I would consider using make_subplots
and attach a go.Scatter
trace to the secondary y-axis to act as a background color instead of shapes to indicate weekends.
Essential code elements:
fig = make_subplots(specs=[[{"secondary_y": True}]])
fig.add_trace(go.Scatter(x=df['date'], y=df.weekend,
fill = 'tonexty', fillcolor = 'rgba(99, 110, 250, 0.2)',
line_shape = 'hv', line_color = 'rgba(0,0,0,0)',
showlegend = False
),
row = 1, col = 1, secondary_y=True)
Plot:
Complete code:
import numpy as np
import pandas as pd
import plotly.graph_objects as go
import plotly.express as px
import datetime
from plotly.subplots import make_subplots
pd.set_option('display.max_rows', None)
# data sample
cols = ['signal']
nperiods = 50
np.random.seed(2)
df = pd.DataFrame(np.random.randint(-1, 2, size=(nperiods, len(cols))),
columns=cols)
datelist = pd.date_range(datetime.datetime(2020, 1, 1).strftime('%Y-%m-%d'),periods=nperiods).tolist()
df['date'] = datelist
df = df.set_index(['date'])
df.index = pd.to_datetime(df.index)
df.iloc[0] = 0
df = df.cumsum().reset_index()
df['signal'] = df['signal'] + 100
df['weekend'] = np.where((df.date.dt.weekday == 5) | (df.date.dt.weekday == 6), 1, 0 )
fig = make_subplots(specs=[[{"secondary_y": True}]])
fig.add_trace(go.Scatter(x=df['date'], y=df.weekend,
fill = 'tonexty', fillcolor = 'rgba(99, 110, 250, 0.2)',
line_shape = 'hv', line_color = 'rgba(0,0,0,0)',
showlegend = False
),
row = 1, col = 1, secondary_y=True)
fig.update_xaxes(showgrid=False)#, gridwidth=1, gridcolor='rgba(0,0,255,0.1)')
fig.update_layout(yaxis2_range=[-0,0.1], yaxis2_showgrid=False, yaxis2_tickfont_color = 'rgba(0,0,0,0)')
fig.add_trace(go.Scatter(x=df['date'], y = df.signal, line_color = 'blue'), secondary_y = False)
fig.show()
Speed tests:
For nperiods = 2000
in the code snippet below on my system, %%timeit
returns:
162 ms ± 1.59 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
The approach in my original suggestion using fig.add_shape()
is considerably slower:
49.2 s ± 2.18 s per loop (mean ± std. dev. of 7 runs, 1 loop each)
Solution 2:[2]
You could use a filled area chart to highlight all weekends at once without using a loop and without creating multiple shapes, see the code below for an example.
import pandas as pd
import numpy as np
import plotly.graph_objects as go
# generate a time series
df = pd.DataFrame({
'date': pd.date_range(start='2021-01-01', periods=18, freq='D'),
'value': 100 * np.cumsum(np.random.normal(loc=0.01, scale=0.005, size=18))
})
# define the y-axis limits
ymin, ymax = df['value'].min() - 5, df['value'].max() + 5
# create an auxiliary time series for highlighting the weekends, equal
# to "ymax" on Saturday and Sunday, and to "ymin" on the other days
df['weekend'] = np.where(df['date'].dt.day_name().isin(['Saturday', 'Sunday']), ymax, ymin)
# define the figure layout
layout = dict(
plot_bgcolor='white',
paper_bgcolor='white',
margin=dict(t=5, b=5, l=5, r=5, pad=0),
yaxis=dict(
range=[ymin, ymax], # fix the y-axis limits
tickfont=dict(size=6),
linecolor='#000000',
color='#000000',
showgrid=False,
mirror=True
),
xaxis=dict(
type='date',
tickformat='%d-%b-%Y (%a)',
tickfont=dict(size=6),
nticks=20,
linecolor='#000000',
color='#000000',
ticks='outside',
mirror=True
),
)
# add the figure traces
data = []
# plot the weekends as a filled area chart
data.append(
go.Scatter(
x=df['date'],
y=df['weekend'],
fill='tonext',
fillcolor='#d9d9d9',
mode='lines',
line=dict(width=0, shape='hvh'),
showlegend=False,
hoverinfo=None,
)
)
# plot the time series as a line chart
data.append(
go.Scatter(
x=df['date'],
y=df['value'],
mode='lines+markers',
marker=dict(size=4, color='#cc503e'),
line=dict(width=1, color='#cc503e'),
showlegend=False,
)
)
# create the figure
fig = go.Figure(data=data, layout=layout)
# save the figure
fig.write_image('figure.png', scale=2, width=500, height=300)
Solution 3:[3]
Two minor modifications to @vestland's answer (see the code block below) fixed the following for me:
- Data points lie on the edges and not clearly inside the shaded vertical bars. It's fixed by using
hvh
forline_shape
. See docs here. - The shaded vertical bar for the last weekend is missing. It's fixed by using
tozeroy
forfill
. See docs here.
fig.add_trace(go.Scatter(...,
fill = 'tozeroy', # Changed from 'tonexty'.
line_shape = 'hvh', # Changed from 'hv'.
...,
),
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
Solution | Source |
---|---|
Solution 1 | |
Solution 2 | |
Solution 3 | Hamza Liaqat |