'Probability of selling the same items again in a pandas dataframe
I need to know the probability of selling similar items together, based on a sales history formatted like this:
pd.DataFrame({"sale_id": [1, 1, 1, 2, 2, 3, 3, 3, 3, 4],
"item": ["A", "B", "C", "A", "C", "A", "D", "E", "C", "B"],
"qty": [1, 4, 3, 2, 8, 3, 6, 5, 12, 9]})
sale_id Item Qty
1 A 1
1 B 4
1 C 3
2 A 2
2 C 8
3 A 3
3 D 6
3 E 5
3 C 12
4 B 9
I want to build a matrix like this:
I have tried pivoting the data frame and using a the pd.DataFrame.corr() with a custom callable, but i ran out of RAM by calling:
pd.pivot_table(df, index = "sales_id", columns = "item")
The actual dataframe that I'm using is 700,000 lines long and have 20,000 different items.
Solution 1:[1]
I set out to find a purely Pandas way of doing things, and ended up also optimizing Pavel's method quite a lot.
Before anything else I do:
df = pd.DataFrame({"sale_id": [1, 1, 1, 2, 2, 3, 3, 3, 3, 4],
"item": ["A", "B", "C", "A", "C", "A", "D", "E", "C", "B"],
"qty": [1, 4, 3, 2, 8, 3, 6, 5, 12, 9]})
df.drop('qty', axis=1, inplace=True)
Then, timing/memory tracing begins:
- Pandas only method:
values = df.groupby('sale_id')['item'].agg(lambda x: [*combinations(sorted(x), 2)]).explode().value_counts()
denom = df['sale_id'].nunique()
output = (values/denom).reindex(combinations(df['item'].unique(), 2), fill_value=0)
output
Output, Timing and Memory Usage:
(A, B) 0.25
(A, C) 0.75
(A, D) 0.25
(A, E) 0.25
(B, C) 0.25
(B, D) 0.00
(B, E) 0.00
(C, D) 0.25
(C, E) 0.25
(D, E) 0.25
Name: item, dtype: float64
475 µs ± 13.9 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)
(End, Peek) Memory: (5442, 16440)
- Optimized version of Pavel's Method:
The only differences are extracting just item
from the groupby, so a Series
is produced rather than a DataFrame
, using agg
instead of transform
, and not using a set
since it's not necessary after agg
.
grp = df.groupby('sale_id')['item'].agg(lambda x: ''.join(x))
purchases = grp.apply(lambda x: ''.join(x)).unique()
unique_items = df.item.unique()
res = {}
for c in combinations(unique_items, 2):
c = set(c)
res[frozenset(c)] = 0
for i in purchases:
if c.intersection(i) == c:
res[frozenset(c)] += 1
for k, v in res.items():
res[k] = v / purchases.shape[0]
res
Output, Timing and Memory Usage:
{frozenset({'A', 'B'}): 0.25,
frozenset({'A', 'C'}): 0.75,
frozenset({'A', 'D'}): 0.25,
frozenset({'A', 'E'}): 0.25,
frozenset({'B', 'C'}): 0.25,
frozenset({'B', 'D'}): 0.0,
frozenset({'B', 'E'}): 0.0,
frozenset({'C', 'D'}): 0.25,
frozenset({'C', 'E'}): 0.25,
frozenset({'D', 'E'}): 0.25}
276 µs ± 6.59 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)
(End, Peek) Memory: (7643, 19402)
- Original Method:
grp = df.groupby('sale_id').transform(lambda x: ''.join(x))
purchases = grp['item'].apply(lambda x: ''.join(set(x))).unique()
unique_items = df.item.unique()
res = {}
for c in combinations(unique_items, 2):
c = set(c)
res[frozenset(c)] = 0
for i in purchases:
if c.intersection(i) == c:
res[frozenset(c)] += 1
for k, v in res.items():
res[k] = v / purchases.shape[0]
res
Timing and Memory Usage:
1.01 ms ± 30.6 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)
(End, Peek) Memory: (15847, 27630)
Methods used were %timeit
in a Jupyter Notebook, and tracemalloc
for memory tracing.
Solution 2:[2]
I believe the standard algorithm for collaborative filtering would go something like:
- first you need to group your data by sale_id and combine the values in the item column.
- Then for each group you need to create a set of items that were bought together.
- Then finally you need to create every possible combination of existing items as a set and do the intersection with your actual item sets
This is what it all looks for me. This should have a linear space complexity and I'm sure it can be improved still but it can work.
from itertools import combinations
import pandas as pd
df = pd.DataFrame({"sale_id": [1, 1, 1, 2, 2, 3, 3, 3, 3, 4],
"item": ["A", "B", "C", "A", "C", "A", "D", "E", "C", "B"],
"qty": [1, 4, 3, 2, 8, 3, 6, 5, 12, 9]})
# we don't care about quantity
df = df.loc[:, ['sale_id', 'item']]
# Get all the unique sets of items sold
grp = df.groupby('sale_id').transform(lambda x: ''.join(x))
purchases = grp['item'].apply(lambda x: ''.join(set(x))).unique()
# create all possible two-item pairs, then iterate over them
# adding 1 to the value of dictionary when the purchase
# matches the combination
unique_items = df.item.unique()
res = {}
for c in combinations(unique_items, 2):
c = set(c)
res[frozenset(c)] = 0
for i in purchases:
if c.intersection(i) == c:
res[frozenset(c)] += 1
# get percentages
for k, v in res.items():
res[k] = v / purchases.shape[0]
Output:
{frozenset({'A', 'B'}): 0.25,
frozenset({'A', 'C'}): 0.75,
frozenset({'A', 'D'}): 0.25,
frozenset({'A', 'E'}): 0.25,
frozenset({'B', 'C'}): 0.25,
frozenset({'B', 'D'}): 0.0,
frozenset({'B', 'E'}): 0.0,
frozenset({'C', 'D'}): 0.25,
frozenset({'C', 'E'}): 0.25,
frozenset({'D', 'E'}): 0.25}
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
Solution | Source |
---|---|
Solution 1 | |
Solution 2 | pavel |