'Reshape tensorflow tensors from feature columns into training samples
Currently my dataset looks like:
feat_1 = tf.random.uniform(
shape=[8000,1],
minval=0,
maxval=1,
dtype=tf.dtypes.float32,
seed=1123,
name=None
)
feat_2 = tf.random.uniform(
shape=[8000,24],
minval=0,
maxval=1,
dtype=tf.dtypes.float32,
seed=1123,
name=None
)
feat_3 = tf.random.uniform(
shape=[8000,26],
minval=0,
maxval=1,
dtype=tf.dtypes.float32,
seed=1123,
name=None
)
# Current_state
dataset = (feat_1, feat_2, feat_3)
How can I reshape it in tensorflow so that the dataset is instead shaped like: (8000,3) where the 3 is a record from each of the three feat_3 tensors?
so rather than have: ((8000,), (8000,24), (8000,26)) I want an 8000 long tensor with each item looking like ((1,), (24,), (26,))
Solution 1:[1]
IIUC, you can try using tf.data.Dataset.from_tensor_slices
:
import tensorflow as tf
feat_1 = tf.random.uniform(
shape=[8000,1],
minval=0,
maxval=1,
dtype=tf.dtypes.float32,
seed=1123,
name=None
)
feat_2 = tf.random.uniform(
shape=[8000,24],
minval=0,
maxval=1,
dtype=tf.dtypes.float32,
seed=1123,
name=None
)
feat_3 = tf.random.uniform(
shape=[8000,26],
minval=0,
maxval=1,
dtype=tf.dtypes.float32,
seed=1123,
name=None
)
dataset = tf.data.Dataset.from_tensor_slices((feat_1, feat_2, feat_3))
for x, y, z in dataset.take(1):
print(x.shape, y.shape, z.shape)
# (1,) (24,) (26,)
Otherwise, you could also consider using a ragged tensor or tf.tuple
if you want a single tensor.
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
Solution | Source |
---|---|
Solution 1 |