'Spark dataframe transform multiple rows to column
I am a novice to spark, and I want to transform below source dataframe (load from JSON file):
+--+-----+-----+
|A |count|major|
+--+-----+-----+
| a| 1| m1|
| a| 1| m2|
| a| 2| m3|
| a| 3| m4|
| b| 4| m1|
| b| 1| m2|
| b| 2| m3|
| c| 3| m1|
| c| 4| m3|
| c| 5| m4|
| d| 6| m1|
| d| 1| m2|
| d| 2| m3|
| d| 3| m4|
| d| 4| m5|
| e| 4| m1|
| e| 5| m2|
| e| 1| m3|
| e| 1| m4|
| e| 1| m5|
+--+-----+-----+
Into below result dataframe:
+--+--+--+--+--+--+
|A |m1|m2|m3|m4|m5|
+--+--+--+--+--+--+
| a| 1| 1| 2| 3| 0|
| b| 4| 2| 1| 0| 0|
| c| 3| 0| 4| 5| 0|
| d| 6| 1| 2| 3| 4|
| e| 4| 5| 1| 1| 1|
+--+--+--+--+--+--+
Here is the Transformation Rule:
The result dataframe is consisted with
A + (n major columns)
where themajor
columns names are specified by:sorted(src_df.map(lambda x: x[2]).distinct().collect())
The result dataframe contains
m
rows where the values forA
column are provided by:sorted(src_df.map(lambda x: x[0]).distinct().collect())
The value for each major column in result dataframe is the value from source dataframe on the corresponding
A
and major (e.g. the count in Row 1 in source dataframe is mapped to thebox
whereA
isa
and columnm1
)The combinations of
A
andmajor
in source dataframe has no duplication (please consider it a primary key on the two columns in SQL)
Solution 1:[1]
Lets start with example data:
df = sqlContext.createDataFrame([
("a", 1, "m1"), ("a", 1, "m2"), ("a", 2, "m3"),
("a", 3, "m4"), ("b", 4, "m1"), ("b", 1, "m2"),
("b", 2, "m3"), ("c", 3, "m1"), ("c", 4, "m3"),
("c", 5, "m4"), ("d", 6, "m1"), ("d", 1, "m2"),
("d", 2, "m3"), ("d", 3, "m4"), ("d", 4, "m5"),
("e", 4, "m1"), ("e", 5, "m2"), ("e", 1, "m3"),
("e", 1, "m4"), ("e", 1, "m5")],
("a", "cnt", "major"))
Please note that I've changed count
to cnt
. Count is a reserved keyword in most of the SQL dialects and it is not a good choice for a column name.
There are at least two ways to reshape this data:
aggregating over DataFrame
from pyspark.sql.functions import col, when, max majors = sorted(df.select("major") .distinct() .map(lambda row: row[0]) .collect()) cols = [when(col("major") == m, col("cnt")).otherwise(None).alias(m) for m in majors] maxs = [max(col(m)).alias(m) for m in majors] reshaped1 = (df .select(col("a"), *cols) .groupBy("a") .agg(*maxs) .na.fill(0)) reshaped1.show() ## +---+---+---+---+---+---+ ## | a| m1| m2| m3| m4| m5| ## +---+---+---+---+---+---+ ## | a| 1| 1| 2| 3| 0| ## | b| 4| 1| 2| 0| 0| ## | c| 3| 0| 4| 5| 0| ## | d| 6| 1| 2| 3| 4| ## | e| 4| 5| 1| 1| 1| ## +---+---+---+---+---+---+
groupBy
over RDDfrom pyspark.sql import Row grouped = (df .map(lambda row: (row.a, (row.major, row.cnt))) .groupByKey()) def make_row(kv): k, vs = kv tmp = dict(list(vs) + [("a", k)]) return Row(**{k: tmp.get(k, 0) for k in ["a"] + majors}) reshaped2 = sqlContext.createDataFrame(grouped.map(make_row)) reshaped2.show() ## +---+---+---+---+---+---+ ## | a| m1| m2| m3| m4| m5| ## +---+---+---+---+---+---+ ## | a| 1| 1| 2| 3| 0| ## | e| 4| 5| 1| 1| 1| ## | c| 3| 0| 4| 5| 0| ## | b| 4| 1| 2| 0| 0| ## | d| 6| 1| 2| 3| 4| ## +---+---+---+---+---+---+
Solution 2:[2]
Using zero323's dataframe,
df = sqlContext.createDataFrame([
("a", 1, "m1"), ("a", 1, "m2"), ("a", 2, "m3"),
("a", 3, "m4"), ("b", 4, "m1"), ("b", 1, "m2"),
("b", 2, "m3"), ("c", 3, "m1"), ("c", 4, "m3"),
("c", 5, "m4"), ("d", 6, "m1"), ("d", 1, "m2"),
("d", 2, "m3"), ("d", 3, "m4"), ("d", 4, "m5"),
("e", 4, "m1"), ("e", 5, "m2"), ("e", 1, "m3"),
("e", 1, "m4"), ("e", 1, "m5")],
("a", "cnt", "major"))
you could also use
reshaped_df = df.groupby('a').pivot('major').max('cnt').fillna(0)
Solution 3:[3]
This is your original dataframe:
df.show()
+--+-----+-----+ |A |count|major| +--+-----+-----+ | a| 1| m1| | a| 1| m2| | a| 2| m3| | a| 3| m4| | b| 4| m1| | b| 1| m2| | b| 2| m3| | c| 3| m1| | c| 4| m3| | c| 5| m4| | d| 6| m1| | d| 1| m2| | d| 2| m3| | d| 3| m4| | d| 4| m5| | e| 4| m1| | e| 5| m2| | e| 1| m3| | e| 1| m4| | e| 1| m5| +--+-----+-----+
Using pivot to reshape the data on "major", grouped by "A", and sum of "count" aggregated as value:
data = ( df.groupBy("A")
.pivot("major")
.sum("count") )
display(data)
+--+--+--+--+--+--+ |A |m1|m2|m3|m4|m5| +--+--+--+--+--+--+ | a| 1| 1| 2| 3| 0| | b| 4| 2| 1| 0| 0| | c| 3| 0| 4| 5| 0| | d| 6| 1| 2| 3| 4| | e| 4| 5| 1| 1| 1| +--+--+--+--+--+--+
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
Solution | Source |
---|---|
Solution 1 | |
Solution 2 | TrentWoodbury |
Solution 3 | GoswamiSagarD |