'Using Application Insights with Unit Tests?
I have an MVC web app, and I'm using Simple Injector for DI. Almost all my code is covered by unit tests. However, now that I've added some telemetry calls in some controllers, I'm having trouble setting up the dependencies.
The telemetry calls are for sending metrics to the Microsoft Azure-hosted Application Insights service. The app is not running in Azure, just a server with ISS. The AI portal tells you all kinds of things about your application, including any custom events you send using the telemetry library. As a result, the controller requires an instance of Microsoft.ApplicationInsights.TelemetryClient, which has no Interface and is a sealed class, with 2 constructors. I tried registering it like so (the hybrid lifestyle is unrelated to this question, I just included it for completeness):
// hybrid lifestyle that gives precedence to web api request scope
var requestOrTransientLifestyle = Lifestyle.CreateHybrid(
() => HttpContext.Current != null,
new WebRequestLifestyle(),
Lifestyle.Transient);
container.Register<TelemetryClient>(requestOrTransientLifestyle);
The problem is that since TelemetryClient has 2 constructors, SI complains and fails validation. I found a post showing how to override the container's constructor resolution behavior, but that seems pretty complicated. First I wanted to back up and ask this question:
If I don't make the TelemetryClient an injected dependency (just create a New one in the class), will that telemetry get sent to Azure on every run of the unit test, creating lots of false data? Or is Application Insights smart enough to know it is running in a unit test, and not send the data?
Any "Insights" into this issue would be much appreciated!
Thanks
Solution 1:[1]
Microsoft.ApplicationInsights.TelemetryClient, which has no Interface and is a sealed class, with 2 constructors.
This TelemetryClient
is a framework type and framework types should not be auto-wired by your container.
I found a post showing how to override the container's constructor resolution behavior, but that seems pretty complicated.
Yep, this complexity is deliberate, because we want to discourage people from creating components with multiple constructors, because this is an anti-pattern.
Instead of using auto-wiring, you can, as @qujck already pointed out, simply make the following registration:
container.Register<TelemetryClient>(() =>
new TelemetryClient(/*whatever values you need*/),
requestOrTransientLifestyle);
Or is Application Insights smart enough to know it is running in a unit test, and not send the data?
Very unlikely. If you want to test the class that depends on this TelemetryClient
, you better use a fake implementation instead, to prevent your unit test to either become fragile, slow, or to pollute your Insight data. But even if testing isn't a concern, according to the Dependency Inversion Principle you should depend on (1) abstractions that are (2) defined by your own application. You fail both points when using the TelemetryClient
.
What you should do instead is define one (or perhaps even multiple) abstractions over the TelemetryClient
that are especially tailored for your application. So don't try to mimic the TelemetryClient
's API with its possible 100 methods, but only define methods on the interface that your controller actually uses, and make them as simple as possible so you can make both the controller's code simpler -and- your unit tests simpler.
After you defined a good abstraction, you can create an adapter implementation that uses the TelemetryClient
internally. I image you register this adapter as follows:
container.RegisterSingleton<ITelemetryLogger>(
new TelemetryClientAdapter(new TelemetryClient(...)));
Here I assume that the TelemetryClient
is thread-safe and can work as a singleton. Otherwise, you can do something like this:
container.RegisterSingleton<ITelemetryLogger>(
new TelemetryClientAdapter(() => new TelemetryClient(...)));
Here the adapter is still a singleton, but is provided with a delegate that allows creation of the TelemetryClient
. Another option is to let the adapter create (and perhaps dispose) the TelemetryClient
internally. That would perhaps make the registration even simpler:
container.RegisterSingleton<ITelemetryLogger>(new TelemetryClientAdapter());
Solution 2:[2]
Application Insights has an example of unit testing the TelemetryClient
by mocking TelemetryChannel
.
TelemetryChannel
implements ITelemetryChannel
so is pretty easy to mock and inject. In this example you can log messages, and then collect them later from Items
for assertions.
public class MockTelemetryChannel : ITelemetryChannel
{
public IList<ITelemetry> Items
{
get;
private set;
}
...
public void Send(ITelemetry item)
{
Items.Add(item);
}
}
...
MockTelemetryChannel = new MockTelemetryChannel();
TelemetryConfiguration configuration = new TelemetryConfiguration
{
TelemetryChannel = MockTelemetryChannel,
InstrumentationKey = Guid.NewGuid().ToString()
};
configuration.TelemetryInitializers.Add(new OperationCorrelationTelemetryInitializer());
TelemetryClient telemetryClient = new TelemetryClient(configuration);
container.Register<TelemetryClient>(telemetryClient);
Solution 3:[3]
I had a lot of success with using Josh Rostad's article for writing my mock TelemetryChannel and injecting it into my tests. Here's the mock object:
public class MockTelemetryChannel : ITelemetryChannel
{
public ConcurrentBag<ITelemetry> SentTelemtries = new ConcurrentBag<ITelemetry>();
public bool IsFlushed { get; private set; }
public bool? DeveloperMode { get; set; }
public string EndpointAddress { get; set; }
public void Send(ITelemetry item)
{
this.SentTelemtries.Add(item);
}
public void Flush()
{
this.IsFlushed = true;
}
public void Dispose()
{
}
}
And then in my tests, a local method to spin-up the mock:
private TelemetryClient InitializeMockTelemetryChannel()
{
// Application Insights TelemetryClient doesn't have an interface (and is sealed)
// Spin -up our own homebrew mock object
MockTelemetryChannel mockTelemetryChannel = new MockTelemetryChannel();
TelemetryConfiguration mockTelemetryConfig = new TelemetryConfiguration
{
TelemetryChannel = mockTelemetryChannel,
InstrumentationKey = Guid.NewGuid().ToString(),
};
TelemetryClient mockTelemetryClient = new TelemetryClient(mockTelemetryConfig);
return mockTelemetryClient;
}
Finally, run the tests!
[TestMethod]
public void TestWidgetDoSomething()
{
//arrange
TelemetryClient mockTelemetryClient = this.InitializeMockTelemetryChannel();
MyWidget widget = new MyWidget(mockTelemetryClient);
//act
var result = widget.DoSomething();
//assert
Assert.IsTrue(result != null);
Assert.IsTrue(result.IsSuccess);
}
Solution 4:[4]
If you don't want to go down the abstraction / wrapper path. In your tests you could simply direct the AppInsights endpoint to a mock lightweight http server (which is trivial in ASP.NET Core).
appInsightsSettings.json
"ApplicationInsights": {
"Endpoint": "http://localhost:8888/v2/track"
}
How to set up "TestServer" in ASP.NET Core http://josephwoodward.co.uk/2016/07/integration-testing-asp-net-core-middleware
Solution 5:[5]
Another option without going the abstraction route is to disable telemetry before doing running your tests:
TelemetryConfiguration.Active.DisableTelemetry = true;
Solution 6:[6]
Based on other work here;
- Create the channel - you can use this for testing telemetries if needed
public class MockTelemetryChannel : ITelemetryChannel
{
public ConcurrentBag<ITelemetry> SentTelemtries = new();
public bool IsFlushed { get; private set; }
public bool? DeveloperMode { get; set; }
public string EndpointAddress { get; set; }
public void Send(ITelemetry item)
{
this.SentTelemtries.Add(item);
}
public void Flush()
{
this.IsFlushed = true;
}
public void Dispose()
{
}
}
- Use a nice little static factory class
public static class MockTelemetryClient
{
public static TelemetryClient Create()
{
var mockTelemetryChannel = new MockTelemetryChannel();
var mockTelemetryConfig = new TelemetryConfiguration
{
TelemetryChannel = mockTelemetryChannel,
InstrumentationKey = Guid.NewGuid().ToString()
};
var mockTelemetryClient = new TelemetryClient(mockTelemetryConfig);
return mockTelemetryClient;
}
}
- Call
MockTelemetryClient.Create()
to get yourTelemetryClient
- Profit
Solution 7:[7]
A colleague of mine wrote this useful library that introduces abstractions for some of these core telemetry types (e.g. ITelemetryClient
and IMetric
).
https://github.com/thomhurst/ApplicationInsights.TelemetryLogger
Very easy to implement. You'll barely have to change anything in your production code, and mocking in tests becomes a breeze. Here's an extract from the README:
Dependency Injection
Call AddApplicationInsightsTelemetry()
as normal, and then call AddApplicationInsightsTelemetryClientInterfaces()
public void ConfigureServices(IServiceCollection services)
{
services
.AddApplicationInsightsTelemetry()
.AddApplicationInsightsTelemetryClientInterfaces();
}
ITelemetryClient
Want the same usage as TelemetryClient
? Inject ITelemetryClient
into your classes. It has all the available methods of TelemetryClient
(apart from any methods which shouldn't be called. e.g. internal or deprecated).
public class MyClass
{
private readonly ITelemetryClient _telemetryClient;
public MyClass(ITelemetryClient telemetryClient)
{
_telemetryClient = telemetryClient;
}
public void DoSomething()
{
_telemetryClient.TrackTrace("Something happened");
}
}
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
Solution | Source |
---|---|
Solution 1 | |
Solution 2 | James Wood |
Solution 3 | spottedmahn |
Solution 4 | DalSoft |
Solution 5 | humbleice |
Solution 6 | PaulB |
Solution 7 |