'Apply Tensorflow tf.keras.initializers.GlorotNormal(seed=1) to tf.Variable
How to apply the initializer to the tf.Variable function? Am I on the right track?
def initialize_parameters():
initializer = tf.keras.initializers.GlorotNormal(seed=1)
W1 = tf.Variable(initializer(shape=([25, 12288]))
b1 = tf.Variable(initializer(shape=([25, 1]))
W2 = tf.Variable(initializer(shape=([12, 25]))
b2 = tf.Variable(initializer(shape=([12, 1]))
W3 = tf.Variable(initializer(shape=([6, 12]))
b3 = tf.Variable(initializer(shape=([6, 1]))
parameters = {"W1": W1,
"b1": b1,
"W2": W2,
"b2": b2,
"W3": W3,
"b3": b3}
return parameters
I want the shapes to be as follow -
W1 shape: (25, 12288)
b1 shape: (25, 1)
W2 shape: (12, 25)
b2 shape: (12, 1)
W3 shape: (6, 12)
b3 shape: (6, 1)
Solution 1:[1]
It should be W1 = tf.Variable(initializer(shape=(25, 12288)))
. Notice the round bracket
Solution 2:[2]
W1 = tf.Variable(initializer(shape=[25, 12288]))
b1 = tf.Variable(initializer(shape=[25, 1]))
W2 = tf.Variable(initializer(shape=[12, 25]))
b2 = tf.Variable(initializer(shape=[12, 1]))
W3 = tf.Variable(initializer(shape=[6, 12]))
b3 = tf.Variable(initializer(shape=[6, 1]))
should be like this
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
Solution | Source |
---|---|
Solution 1 | Byron Wong |
Solution 2 | Namit Patel |