'conda install matplotlib results in huge list on incompatibilities
I have a conda env that I build from a requirements.yml file that I obtained from a classmate so we could work on a project together. I tried installing matplotlib and it resulted in a gigantic list of incompatibilities that I don't think I could even start tackling manually.
Here are the most important packages I'm using (the ones that have come up in a few other posts I've looked at and what the error looks like):
- python 3.9.7
- tensorflow 2.6.0
- anaconda 4.11
- numpy 1.21.2
- tornado 6.1
Is there a way of adressing this without going into every line of the error?:
The part of the error containing matplotlib incompatibilities specifically:
- matplotlib -> cycler[version='>=0.10'] -> six[version='>=1.5']
- matplotlib -> libpng[version='>=1.6.32,<1.7.0a0|>=1.6.34,<1.7.0a0|>=1.6.35,<1.7.0a0|>=1.6.36,<1.7.0a0|>=1.6.37,<1.7.0a0']
- matplotlib -> matplotlib-base[version='>=3.5.0,<3.5.1.0a0'] -> numpy[version='>=1.15.4,<2.0a0|>=1.16.6,<2.0a0|>=1.19.2,<2.0a0']
- matplotlib -> matplotlib-base[version='>=3.5.0,<3.5.1.0a0'] -> packaging[version='>=20.0']
- matplotlib -> matplotlib-base[version='>=3.5.0,<3.5.1.0a0'] -> pyparsing[version='>=2.0.3,!=2.0.4,!=2.1.2,!=2.1.6|>=2.2.1']
- matplotlib -> matplotlib-base[version='>=3.5.0,<3.5.1.0a0'] -> python-dateutil[version='>=2.1|>=2.7']
- matplotlib -> numpy[version='>=1.14.6,<2.0a0'] -> blas[version='*|1.0',build=mkl]
- matplotlib -> numpy[version='>=1.14.6,<2.0a0'] -> icc_rt[version='>=13.1.6|>=2019.0.0|>=16.0.4']
- matplotlib -> numpy[version='>=1.14.6,<2.0a0'] -> mkl-service[version='>=2,<3.0a0|>=2.3.0,<3.0a0']
- matplotlib -> numpy[version='>=1.14.6,<2.0a0'] -> mkl[version='>=2018.0.0,<2019.0a0|>=2018.0.1,<2019.0a0|>=2018.0.2,<2019.0a0|>=2018.0.3,<2019.0a0|>=2019.1,<2021.0a0|>=2019.3,<2021.0a0|>=2019.4,<2021.0a0|>=2021.2.0,<2022.0a0|>=2021.3.0,<2022.0a0|>=2019.4,<2020.0a0']
- matplotlib -> numpy[version='>=1.14.6,<2.0a0'] -> mkl_random[version='>=1.0.2,<2.0a0|>=1.2.1,<2.0a0|>=1.0.4,<2.0a0']
- matplotlib -> numpy[version='>=1.14.6,<2.0a0'] -> numpy-base[version='1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.11.3|1.14.3|1.14.3|1.14.3|1.14.4|1.14.4|1.14.4|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.5|1.14.6|1.14.6|1.14.6|1.14.6|1.14.6|1.14.6|1.14.6|1.14.6|1.15.0|1.15.0|1.15.0|1.15.0|1.15.1|1.15.1|1.15.1|1.15.1|1.15.2|1.15.2|1.15.2|1.15.2|1.15.2|1.15.3|1.15.3|1.15.3|1.15.4|1.15.4|1.15.4|1.15.4|1.15.4|1.15.4|1.16.0|1.16.0|1.16.0|1.16.0|1.16.0|1.16.0|1.16.1|1.16.1|1.16.1|1.16.1|1.16.1|1.16.1|1.16.2|1.16.2|1.16.2|1.16.3|1.16.3|1.16.3|1.16.4|1.16.4|1.16.5|1.16.5|1.16.5|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.16.6|1.17.2.*|1.17.3.*|1.17.4.*|1.18.1.*|1.18.5.*|1.19.1|1.19.1|1.19.1|1.19.2|1.19.2|1.19.2|1.19.2|1.20.1|1.20.1|1.20.1|1.20.2|1.20.2|1.20.2|1.20.3|1.20.3|1.20.3|1.21.2|1.17.0|1.17.0|1.9.3|1.9.3|1.9.3|1.9.3|1.9.3|1.9.3|1.9.3|>=1.9.3,<2.0a0',build='py27h0bb1d87_7|py35h5c71026_7|py36h5c71026_7|py27h0bb1d87_8|py35h4a99626_9|py27hfef472a_9|py37h8128ebf_9|py36h8128ebf_9|py35h8128ebf_9|py27h2753ae9_9|py27h2753ae9_10|py36h8128ebf_11|py37h2a9b21d_11|py36h2a9b21d_11|py27hb1d0314_11|py37hc3f5095_12|py38hc3f5095_12|py27h917549b_1|py35h5c71026_0|py27h0bb1d87_0|py35h5c71026_0|py27h0bb1d87_0|py27h0bb1d87_1|py36h5c71026_1|py37h5c71026_2|py27h0bb1d87_2|py27h0bb1d87_3|py36h5c71026_3|py27h0bb1d87_4|py37h5c71026_4|py36h5c71026_4|py35h4a99626_4|py37h8128ebf_4|py27h2753ae9_4|py35h8128ebf_4|py38hc3f5095_4|py37hc3f5095_5|py27hb1d0314_5|py36hc3f5095_5|py35h4a99626_0|py37h4a99626_0|py37h8128ebf_0|py35h8128ebf_0|py27h2753ae9_0|py36h8128ebf_0|py35h8128ebf_0|py37h8128ebf_0|py36h8128ebf_0|py37h8128ebf_0|py27h2753ae9_0|py37h8128ebf_0|py36h8128ebf_0|py36hc3f5095_0|py27hb1d0314_0|py36hc3f5095_0|py37hc3f5095_1|py27hb1d0314_1|py27hb1d0314_0|py36hc3f5095_0|py37hc3f5095_1|py27hb1d0314_1|py27hb1d0314_0|py27hb1d0314_0|py36hc3f5095_0|py36hc3f5095_0|py27hb1d0314_0|py36h5bb6eb2_3|py38h5bb6eb2_3|py37hc2deb75_0|py39h0829f74_0|py37h0829f74_0|py38h0829f74_0|py39hc2deb75_0|py38hc2deb75_0|py37hc2deb75_0|py38hc2deb75_0|py39hc2deb75_0|py38haf7ebc8_0|py39haf7ebc8_0|py37haf7ebc8_0|py39hbd0edd7_0|py36ha3acd2a_0|py37ha3acd2a_0|py38ha3acd2a_0|py36ha3acd2a_0|py37ha3acd2a_0|py38ha3acd2a_0|py39h5bb6eb2_3|py37h5bb6eb2_3|py39h2e04a8b_1|py38hc3f5095_0|py37hc3f5095_0|py37hc3f5095_0|py27hb1d0314_0|py36hc3f5095_0|py37hc3f5095_0|py36hc3f5095_0|py37hc3f5095_0|py36hc3f5095_0|py37hc3f5095_0|py36hc3f5095_1|py37hc3f5095_0|py36hc3f5095_1|py37hc3f5095_0|py37hc3f5095_0|py27hb1d0314_0|py27h2753ae9_0|py27h2753ae9_1|py36h8128ebf_0|py27h2753ae9_0|py27hfef472a_0|py36h4a99626_0|py36h8128ebf_4|py36hc3f5095_0|py37hc3f5095_0|py37h5c71026_3|py36h5c71026_2|py37h5c71026_1|py37h5c71026_0|py36h5c71026_0|py36h5c71026_0|py36h555522e_1|py35h555522e_1|py36hc3f5095_12|py27hb1d0314_12|py37h8128ebf_11|py37h8128ebf_10|py36h8128ebf_10|py35h8128ebf_10|py37h4a99626_9|py36h4a99626_9|py35h4a99626_8|py37h5c71026_8|py36h5c71026_8|py37h5c71026_7|py27h0bb1d87_7|py37h5c71026_7|py36h5c71026_7|py27h0bb1d87_6|py36h5c71026_6|py37h5c71026_6']
- matplotlib -> pyparsing
- matplotlib -> python-dateutil
- matplotlib -> python[version='>=2.7,<2.8.0a0'] -> ca-certificates
- matplotlib -> python[version='>=3.6,<3.7.0a0'] -> vs2015_runtime[version='>=14.0.25123,<15.0a0|>=14.0.25420|>=14.15.26706|>=14.27.29016|>=14.16.27012']
- matplotlib -> python[version='>=3.9,<3.10.0a0'] -> openssl[version='>=1.1.1a,<1.1.2a|>=1.1.1b,<1.1.2a|>=1.1.1c,<1.1.2a|>=1.1.1d,<1.1.2a|>=1.1.1e,<1.1.2a|>=1.1.1f,<1.1.2a|>=1.1.1g,<1.1.2a|>=1.1.1h,<1.1.2a|>=1.1.1i,<1.1.2a|>=1.1.1j,<1.1.2a|>=1.1.1k,<1.1.2a|>=1.1.1l,<1.1.2a']
- matplotlib -> python[version='>=3.9,<3.10.0a0'] -> pip
- matplotlib -> python[version='>=3.9,<3.10.0a0'] -> sqlite[version='>=3.25.3,<4.0a0|>=3.26.0,<4.0a0|>=3.27.2,<4.0a0|>=3.28.0,<4.0a0|>=3.29.0,<4.0a0|>=3.30.1,<4.0a0|>=3.31.1,<4.0a0|>=3.33.0,<4.0a0|>=3.35.4,<4.0a0|>=3.36.0,<4.0a0|>=3.32.3,<4.0a0|>=3.30.0,<4.0a0|>=3.35.1,<4.0a0']
- matplotlib -> python[version='>=3.9,<3.10.0a0'] -> tzdata
- matplotlib -> pytz
- matplotlib -> setuptools -> wincertstore[version='>=0.2']
- matplotlib -> tornado -> certifi[version='>=2016.09|>=2016.9.26|>=2020.06.20']
- matplotlib -> vc[version='14.*|>=14.1,<15.0a0|9.*']
- matplotlib -> vs2015_runtime[version='>=14.16.27012,<15.0a0']
- matplotlib -> zlib[version='>=1.2.11,<1.3.0a0']
Solution 1:[1]
- Create separate
conda
environments.keras-tf
should be in a separate environment from (base), which you're doing, but you may want to create it from scratch.conda create -n tf tensorflow matplotlib
will only install compatible versions of packages.
- When creating an environment from scratch,
conda
works out the correct dependencies, but if installing from a requirements file, specific versions are being forced. If theyml
file being used wasn't fromconda
, there may be version conflicts. - The more packages with a specific version, the more likely there is to be an version conflict.
- See conda: Creating an environment with commands and Anaconda Tensorflow Documentation
- Following is my working tensorflow conda environment, which will become outdated and shouldn't necessarily be used by others. It was posted as an example.
name: tf-gpu
channels:
- defaults
- conda-forge
dependencies:
- _tflow_select=2.1.0=gpu
- abseil-cpp=20210324.2=hd77b12b_0
- absl-py=0.13.0=py39haa95532_0
- aiohttp=3.8.1=py39h2bbff1b_0
- aiosignal=1.2.0=pyhd3eb1b0_0
- astor=0.8.1=py39haa95532_0
- astunparse=1.6.3=py_0
- async-timeout=4.0.1=pyhd3eb1b0_0
- attrs=21.2.0=pyhd3eb1b0_0
- backcall=0.2.0=pyhd3eb1b0_0
- blas=1.0=mkl
- blinker=1.4=py39haa95532_0
- bottleneck=1.3.2=py39h7cc1a96_1
- brotli=1.0.9=ha925a31_2
- brotlipy=0.7.0=py39h2bbff1b_1003
- ca-certificates=2021.10.26=haa95532_2
- cached-property=1.5.2=py_0
- cachetools=4.2.2=pyhd3eb1b0_0
- certifi=2021.10.8=py39haa95532_0
- cffi=1.15.0=py39h2bbff1b_0
- chardet=4.0.0=py39haa95532_1003
- charset-normalizer=2.0.4=pyhd3eb1b0_0
- click=8.0.3=pyhd3eb1b0_0
- colorama=0.4.4=pyhd3eb1b0_0
- coverage=5.5=py39h2bbff1b_2
- cryptography=3.4.8=py39h71e12ea_0
- cudatoolkit=11.3.1=h59b6b97_2
- cudnn=8.2.1=cuda11.3_0
- cycler=0.11.0=pyhd3eb1b0_0
- cython=0.29.24=py39h604cdb4_0
- dataclasses=0.8=pyh6d0b6a4_7
- debugpy=1.5.1=py39hd77b12b_0
- decorator=5.1.0=pyhd3eb1b0_0
- entrypoints=0.3=py39haa95532_0
- flatbuffers=2.0.0=h6c2663c_0
- fonttools=4.25.0=pyhd3eb1b0_0
- freetype=2.10.4=hd328e21_0
- frozenlist=1.2.0=py39h2bbff1b_0
- gast=0.4.0=pyhd3eb1b0_0
- giflib=5.2.1=h62dcd97_0
- google-auth=1.33.0=pyhd3eb1b0_0
- google-auth-oauthlib=0.4.1=py_2
- google-pasta=0.2.0=pyhd3eb1b0_0
- grpcio=1.42.0=py39hc60d5dd_0
- h5py=3.6.0=py39h3de5c98_0
- hdf5=1.10.6=h7ebc959_0
- icc_rt=2019.0.0=h0cc432a_1
- icu=68.1=h6c2663c_0
- idna=3.3=pyhd3eb1b0_0
- importlib-metadata=4.8.2=py39haa95532_0
- intel-openmp=2021.4.0=haa95532_3556
- ipykernel=6.4.1=py39haa95532_1
- ipython=7.29.0=py39hd4e2768_0
- ipython_genutils=0.2.0=pyhd3eb1b0_1
- jedi=0.18.0=py39haa95532_1
- jpeg=9d=h2bbff1b_0
- jupyter_client=7.0.6=pyhd3eb1b0_0
- jupyter_core=4.9.1=py39haa95532_0
- keras=2.6.0=py39hd3eb1b0_0
- keras-base=2.6.0=pyhd3eb1b0_0
- keras-preprocessing=1.1.2=pyhd3eb1b0_0
- kiwisolver=1.3.1=py39hd77b12b_0
- libclang=11.1.0=default_h5c34c98_1
- libcurl=7.80.0=h86230a5_0
- libpng=1.6.37=h2a8f88b_0
- libprotobuf=3.17.2=h23ce68f_1
- libssh2=1.9.0=h7a1dbc1_1
- libtiff=4.2.0=hd0e1b90_0
- libwebp=1.2.0=h2bbff1b_0
- lz4-c=1.9.3=h2bbff1b_1
- markdown=3.3.4=py39haa95532_0
- matplotlib=3.5.0=py39haa95532_0
- matplotlib-base=3.5.0=py39h6214cd6_0
- matplotlib-inline=0.1.2=pyhd3eb1b0_2
- mkl=2021.4.0=haa95532_640
- mkl-service=2.4.0=py39h2bbff1b_0
- mkl_fft=1.3.1=py39h277e83a_0
- mkl_random=1.2.2=py39hf11a4ad_0
- multidict=5.1.0=py39h2bbff1b_2
- munkres=1.1.4=py_0
- nest-asyncio=1.5.1=pyhd3eb1b0_0
- numexpr=2.7.3=py39hb80d3ca_1
- numpy=1.21.2=py39hfca59bb_0
- numpy-base=1.21.2=py39h0829f74_0
- oauthlib=3.1.1=pyhd3eb1b0_0
- olefile=0.46=pyhd3eb1b0_0
- openssl=1.1.1l=h2bbff1b_0
- opt_einsum=3.3.0=pyhd3eb1b0_1
- packaging=21.3=pyhd3eb1b0_0
- pandas=1.3.4=py39h6214cd6_0
- parso=0.8.2=pyhd3eb1b0_0
- pickleshare=0.7.5=pyhd3eb1b0_1003
- pillow=8.4.0=py39hd45dc43_0
- pip=21.2.4=py39haa95532_0
- prompt-toolkit=3.0.20=pyhd3eb1b0_0
- protobuf=3.17.2=py39hd77b12b_0
- pyasn1=0.4.8=pyhd3eb1b0_0
- pyasn1-modules=0.2.8=py_0
- pycparser=2.21=pyhd3eb1b0_0
- pygments=2.10.0=pyhd3eb1b0_0
- pyjwt=2.1.0=py39haa95532_0
- pyopenssl=21.0.0=pyhd3eb1b0_1
- pyparsing=3.0.4=pyhd3eb1b0_0
- pyqt=5.12.3=py39hcbf5309_8
- pyqt-impl=5.12.3=py39h415ef7b_8
- pyqt5-sip=4.19.18=py39h415ef7b_8
- pyqtchart=5.12=py39h415ef7b_8
- pyqtwebengine=5.12.1=py39h415ef7b_8
- pyreadline=2.1=py39haa95532_1
- pysocks=1.7.1=py39haa95532_0
- python=3.9.7=h6244533_1
- python-dateutil=2.8.2=pyhd3eb1b0_0
- python-flatbuffers=1.12=pyhd3eb1b0_0
- python_abi=3.9=2_cp39
- pytz=2021.3=pyhd3eb1b0_0
- pywin32=228=py39hbaba5e8_1
- pyyaml=6.0=py39h2bbff1b_1
- pyzmq=22.3.0=py39hd77b12b_2
- qt=5.12.9=h5909a2a_4
- requests=2.26.0=pyhd3eb1b0_0
- requests-oauthlib=1.3.0=py_0
- rsa=4.7.2=pyhd3eb1b0_1
- scipy=1.7.1=py39hbe87c03_2
- seaborn=0.11.2=pyhd3eb1b0_0
- setuptools=58.0.4=py39haa95532_0
- six=1.16.0=pyhd3eb1b0_0
- snappy=1.1.8=h33f27b4_0
- sqlite=3.36.0=h2bbff1b_0
- tensorboard=2.6.0=py_1
- tensorboard-data-server=0.6.0=py39haa95532_0
- tensorboard-plugin-wit=1.6.0=py_0
- tensorflow=2.6.0=gpu_py39he88c5ba_0
- tensorflow-base=2.6.0=gpu_py39hb3da07e_0
- tensorflow-estimator=2.6.0=pyh7b7c402_0
- tensorflow-gpu=2.6.0=h17022bd_0
- termcolor=1.1.0=py39haa95532_1
- tk=8.6.11=h2bbff1b_0
- tornado=6.1=py39h2bbff1b_0
- traitlets=5.1.1=pyhd3eb1b0_0
- typing-extensions=3.10.0.2=hd3eb1b0_0
- typing_extensions=3.10.0.2=pyh06a4308_0
- tzdata=2021e=hda174b7_0
- urllib3=1.26.7=pyhd3eb1b0_0
- vc=14.2=h21ff451_1
- vs2015_runtime=14.27.29016=h5e58377_2
- wcwidth=0.2.5=pyhd3eb1b0_0
- werkzeug=2.0.2=pyhd3eb1b0_0
- wheel=0.35.1=pyhd3eb1b0_0
- win_inet_pton=1.1.0=py39haa95532_0
- wincertstore=0.2=py39haa95532_2
- wrapt=1.13.3=py39h2bbff1b_2
- xz=5.2.5=h62dcd97_0
- yaml=0.2.5=he774522_0
- yarl=1.6.3=py39h2bbff1b_0
- zipp=3.6.0=pyhd3eb1b0_0
- zlib=1.2.11=h62dcd97_4
- zstd=1.4.9=h19a0ad4_0
prefix: C:\Users\...\anaconda3\envs\tf-gpu
Solution 2:[2]
I had the same problem. Couldn't install matplotlib 3.5.1 after I installed tensorflow 2.6.0. I could solve it by using using conda-forge (see https://anaconda.org/conda-forge/matplotlib):
conda install -c conda-forge matplotlib
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
Solution | Source |
---|---|
Solution 1 | |
Solution 2 | Tony T |