'`generator` yielded an element of shape (8, 0) where an element of shape (None,) was expected. Traceback (most recent call last):
I was training a network and I decided to add more data for training. my data set is selected from another data but both have (460,620,3) and Uint8 type. but when I train my net with this data, I got this error:
Epoch 1/40
1/100 [..............................] - ETA: 8:10 - loss: 10312.7480 - X_coordinate_loss: 5268.6304 - Y_coordinate_loss: 5044.1172 - X_coordinate_mae: 382.9972 - Y_coordinate_mae: 382.5627
---------------------------------------------------------------------------
InvalidArgumentError Traceback (most recent call last)
<ipython-input-14-0695a4e6d1ee> in <module>()
5 callbacks=callbacks,
6 validation_data=valid_dataloader,
----> 7 validation_steps=20,
8 )
1 frames
/usr/local/lib/python3.7/dist-packages/tensorflow/python/eager/execute.py in quick_execute(op_name, num_outputs, inputs, attrs, ctx, name)
53 ctx.ensure_initialized()
54 tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,
---> 55 inputs, attrs, num_outputs)
56 except core._NotOkStatusException as e:
57 if name is not None:
InvalidArgumentError: Graph execution error:
TypeError: `generator` yielded an element of shape (8, 0) where an element of shape (None,) was expected.
Traceback (most recent call last):
File "/usr/local/lib/python3.7/dist-packages/tensorflow/python/ops/script_ops.py", line 271, in __call__
ret = func(*args)
File "/usr/local/lib/python3.7/dist-packages/tensorflow/python/autograph/impl/api.py", line 642, in wrapper
return func(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/tensorflow/python/data/ops/dataset_ops.py", line 1048, in generator_py_func
f"`generator` yielded an element of shape {ret_array.shape} "
TypeError: `generator` yielded an element of shape (8, 0) where an element of shape (None,) was expected.
[[{{node PyFunc}}]]
[[IteratorGetNext]] [Op:__inference_train_function_3420]
my batch size is = 8 and my network is:
class MultiOutputModel():
def make_default_hidden_layers(self, inputs):
x = Conv2D(16, (3, 3), padding="same")(inputs)
x = Activation("relu")(x)
x = BatchNormalization(axis=-1)(x)
x = MaxPooling2D(pool_size=(3, 3))(x)
x = Dropout(0.25)(x)
x = Conv2D(32, (3, 3), padding="same")(x)
x = Activation("relu")(x)
x = BatchNormalization(axis=-1)(x)
x = MaxPooling2D(pool_size=(2, 2))(x)
x = Dropout(0.25)(x)
x = Conv2D(64, (3, 3), padding="same")(x)
x = Activation("relu")(x)
x = BatchNormalization(axis=-1)(x)
x = MaxPooling2D(pool_size=(2, 2))(x)
x = Dropout(0.25)(x)
return x
def build_X_coordinate(self, inputs):
x = self.make_default_hidden_layers(inputs)
x = Flatten()(x)
x = Dense(100)(x)
x = Activation("relu")(x)
x = BatchNormalization()(x)
x = Dropout(0.5)(x)
x = Dense(1)(x)
x = Activation("linear", name="X_coordinate")(x)
return x
def build_Y_coordinate(self, inputs):
x = self.make_default_hidden_layers(inputs)
x = Flatten()(x)
x = Dense(100)(x)
x = Activation("relu")(x)
x = BatchNormalization()(x)
x = Dropout(0.5)(x)
x = Dense(1)(x)
x = Activation("linear", name="Y_coordinate")(x)
return x
def assemble_full_model(self, width, height):
input_shape = (height, width, 3)
inputs = Input(shape=input_shape)
X_branch = self.build_X_coordinate(inputs)
Y_branch = self.build_Y_coordinate(inputs)
model = Model(inputs=inputs,outputs = [X_branch, Y_branch ])
return model
I would mention that before adding the new data, it is working well. number of my data = 1043 len(train) 80 len(test) 37 len(valid) thank you a lot.
its my colab link: https://colab.research.google.com/drive/1f0PdSyxoQV1b8Loob0qgD2SAuA3LdeHG?usp=sharing
Solution 1:[1]
But you didn't show the generator & the signature in caller - so nobody could see... I had the same problem (for the topic's name), therefore (if somebody wiil need) I show the simplified example:
# Importing the tensorflow library
import tensorflow as tf
import numpy as np
def fn_t():
for x in range(1,10,1):
# print(x) # need async print to console !
tt= x+2
t1= tf.convert_to_tensor(np.array([[0,4],[tt,5]]))
yield x, t1 # using generators each item should be a pair of the input data and the label
# Specifying a dataset of some elements
dataset = tf.data.Dataset.from_generator(
fn_t,
output_signature=(
tf.TensorSpec(shape=(), dtype=tf.int32),
tf.TensorSpec(shape=(2, None), dtype=tf.int32))
)
ds= dataset.take(2)
labels = list(map(lambda x: x[1], ds))
print(labels, "\n=========\n")
I had error until I achieved similar shapes in t_fn yield & output_signature in method that catches this yield... Code works OK for simplified t1 in t_fn (it gave error before my corrections). Let it be helpfull.
p.s. here examle for supervised dataset
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
Solution | Source |
---|---|
Solution 1 |