'How to overcome value error python model prediction?
I have trained a model and now my task was to test it on unseen images from the internet. Originally the model was trained on CIFAR-10 so for the model I chose images of cat and dog taken from the internet. Once running I have encountered an error please see it below.
import numpy as np
import tensorflow as tf
from tensorflow.keras.applications.resnet50 import preprocess_input, decode_predictions
from tensorflow.keras.preprocessing import image
from keras.models import model_from_json
from keras.optimizers import SGD
import matplotlib.pyplot as plt
# In[2]:
#load model
model_architecture = 'cifar10_architecture.json'
model_weights = 'cifar10_weights.h5'
model = model_from_json(open(model_architecture).read())
model.load_weights(model_weights)
# In[3]:
#load images
img1 = image.load_img('cat.jpg', target_size=(32, 32))
img2 = image.load_img('dog.jpg', target_size=(32, 32))
# In[4]:
#plot images
f, axarr = plt.subplots(1,2)
axarr[0].imshow(img1)
axarr[1].imshow(img2)
# In[5]:
img_array = [img1, img2]
imgs = [np.transpose(img_name).astype('float32') for img_name in img_array]
imgs = np.array(imgs)/255
# In[6]:
#train
optim = SGD()
model.compile(loss = 'categorical_crossentropy', optimizer = optim, metrics = ['accuracy'])
# In[7]:
#predict
predictions = model.predict_classes(imgs)
print(predictions)
Here is an error. I fed the image and transformed them.
WARNING:tensorflow:From <ipython-input-7-5c038790856b>:2: Sequential.predict_classes (from tensorflow.python.keras.engine.sequential) is deprecated and will be removed after 2021-01-01.
Instructions for updating:
Please use instead:* `np.argmax(model.predict(x), axis=-1)`, if your model does multi-class classification (e.g. if it uses a `softmax` last-layer activation).* `(model.predict(x) > 0.5).astype("int32")`, if your model does binary classification (e.g. if it uses a `sigmoid` last-layer activation).
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-7-5c038790856b> in <module>
1 #predict
----> 2 predictions = model.predict_classes(imgs)
3 print(predictions)
~\AppData\Roaming\Python\Python37\site-packages\tensorflow\python\util\deprecation.py in new_func(*args, **kwargs)
322 'in a future version' if date is None else ('after %s' % date),
323 instructions)
--> 324 return func(*args, **kwargs)
325 return tf_decorator.make_decorator(
326 func, new_func, 'deprecated',
~\AppData\Roaming\Python\Python37\site-packages\tensorflow\python\keras\engine\sequential.py in predict_classes(self, x, batch_size, verbose)
451 A numpy array of class predictions.
452 """
--> 453 proba = self.predict(x, batch_size=batch_size, verbose=verbose)
454 if proba.shape[-1] > 1:
455 return proba.argmax(axis=-1)
~\AppData\Roaming\Python\Python37\site-packages\tensorflow\python\keras\engine\training.py in _method_wrapper(self, *args, **kwargs)
128 raise ValueError('{} is not supported in multi-worker mode.'.format(
129 method.__name__))
--> 130 return method(self, *args, **kwargs)
131
132 return tf_decorator.make_decorator(
~\AppData\Roaming\Python\Python37\site-packages\tensorflow\python\keras\engine\training.py in predict(self, x, batch_size, verbose, steps, callbacks, max_queue_size, workers, use_multiprocessing)
1597 for step in data_handler.steps():
1598 callbacks.on_predict_batch_begin(step)
-> 1599 tmp_batch_outputs = predict_function(iterator)
1600 if data_handler.should_sync:
1601 context.async_wait()
~\AppData\Roaming\Python\Python37\site-packages\tensorflow\python\eager\def_function.py in __call__(self, *args, **kwds)
778 else:
779 compiler = "nonXla"
--> 780 result = self._call(*args, **kwds)
781
782 new_tracing_count = self._get_tracing_count()
~\AppData\Roaming\Python\Python37\site-packages\tensorflow\python\eager\def_function.py in _call(self, *args, **kwds)
821 # This is the first call of __call__, so we have to initialize.
822 initializers = []
--> 823 self._initialize(args, kwds, add_initializers_to=initializers)
824 finally:
825 # At this point we know that the initialization is complete (or less
~\AppData\Roaming\Python\Python37\site-packages\tensorflow\python\eager\def_function.py in _initialize(self, args, kwds, add_initializers_to)
695 self._concrete_stateful_fn = (
696 self._stateful_fn._get_concrete_function_internal_garbage_collected( # pylint: disable=protected-access
--> 697 *args, **kwds))
698
699 def invalid_creator_scope(*unused_args, **unused_kwds):
~\AppData\Roaming\Python\Python37\site-packages\tensorflow\python\eager\function.py in _get_concrete_function_internal_garbage_collected(self, *args, **kwargs)
2853 args, kwargs = None, None
2854 with self._lock:
-> 2855 graph_function, _, _ = self._maybe_define_function(args, kwargs)
2856 return graph_function
2857
~\AppData\Roaming\Python\Python37\site-packages\tensorflow\python\eager\function.py in _maybe_define_function(self, args, kwargs)
3211
3212 self._function_cache.missed.add(call_context_key)
-> 3213 graph_function = self._create_graph_function(args, kwargs)
3214 self._function_cache.primary[cache_key] = graph_function
3215 return graph_function, args, kwargs
~\AppData\Roaming\Python\Python37\site-packages\tensorflow\python\eager\function.py in _create_graph_function(self, args, kwargs, override_flat_arg_shapes)
3073 arg_names=arg_names,
3074 override_flat_arg_shapes=override_flat_arg_shapes,
-> 3075 capture_by_value=self._capture_by_value),
3076 self._function_attributes,
3077 function_spec=self.function_spec,
~\AppData\Roaming\Python\Python37\site-packages\tensorflow\python\framework\func_graph.py in func_graph_from_py_func(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes)
984 _, original_func = tf_decorator.unwrap(python_func)
985
--> 986 func_outputs = python_func(*func_args, **func_kwargs)
987
988 # invariant: `func_outputs` contains only Tensors, CompositeTensors,
~\AppData\Roaming\Python\Python37\site-packages\tensorflow\python\eager\def_function.py in wrapped_fn(*args, **kwds)
598 # __wrapped__ allows AutoGraph to swap in a converted function. We give
599 # the function a weak reference to itself to avoid a reference cycle.
--> 600 return weak_wrapped_fn().__wrapped__(*args, **kwds)
601 weak_wrapped_fn = weakref.ref(wrapped_fn)
602
~\AppData\Roaming\Python\Python37\site-packages\tensorflow\python\framework\func_graph.py in wrapper(*args, **kwargs)
971 except Exception as e: # pylint:disable=broad-except
972 if hasattr(e, "ag_error_metadata"):
--> 973 raise e.ag_error_metadata.to_exception(e)
974 else:
975 raise
ValueError: in user code:
C:\Users\nikit\AppData\Roaming\Python\Python37\site-packages\tensorflow\python\keras\engine\training.py:1462 predict_function *
return step_function(self, iterator)
C:\Users\nikit\AppData\Roaming\Python\Python37\site-packages\tensorflow\python\keras\engine\training.py:1452 step_function **
outputs = model.distribute_strategy.run(run_step, args=(data,))
C:\Users\nikit\AppData\Roaming\Python\Python37\site-packages\tensorflow\python\distribute\distribute_lib.py:1211 run
return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)
C:\Users\nikit\AppData\Roaming\Python\Python37\site-packages\tensorflow\python\distribute\distribute_lib.py:2585 call_for_each_replica
return self._call_for_each_replica(fn, args, kwargs)
C:\Users\nikit\AppData\Roaming\Python\Python37\site-packages\tensorflow\python\distribute\distribute_lib.py:2945 _call_for_each_replica
return fn(*args, **kwargs)
C:\Users\nikit\AppData\Roaming\Python\Python37\site-packages\tensorflow\python\keras\engine\training.py:1445 run_step **
outputs = model.predict_step(data)
C:\Users\nikit\AppData\Roaming\Python\Python37\site-packages\tensorflow\python\keras\engine\training.py:1418 predict_step
return self(x, training=False)
C:\Users\nikit\AppData\Roaming\Python\Python37\site-packages\tensorflow\python\keras\engine\base_layer.py:976 __call__
self.name)
C:\Users\nikit\AppData\Roaming\Python\Python37\site-packages\tensorflow\python\keras\engine\input_spec.py:216 assert_input_compatibility
' but received input with shape ' + str(shape))
ValueError: Input 0 of layer sequential_2 is incompatible with the layer: expected axis -1 of input shape to have value 3 but received input with shape [None, 3, 32, 32]
Solution 1:[1]
As the error states, the model expects the input with shape [None, 32, 32, 3] instead of [None, 3, 32, 32]. Adding imgs=np.moveaxis(imgs,1,-1)
before compiling will solve the error.
imgs=np.moveaxis(imgs,1,-1)
#train
optim = tf.keras.optimizers.SGD()
model.compile(loss = 'categorical_crossentropy', optimizer = optim, metrics = ['accuracy'])
Let us know if the issue still persists. Thanks!
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
Solution | Source |
---|---|
Solution 1 | Tfer3 |