'Panda merge returns NAN values
Please consider 2 dataframes panda df1 and df2:
df1 = pd.read_csv('df1.csv', sep=';')
df2 = pd.read_csv('df2.csv', sep=';')
We convert to date fields:
df1['DAT_DATETIME'] = pd.to_datetime(df1['DAT_DATETIME'], format='%Y-%m-%d %H:%M:%S')
df2['DAT_MESURE'] = pd.to_datetime(df2['DAT_MESURE'], format='%Y-%m-%d %H:%M:%S')
As you can see for example Df1 row 4092 matchs with Df2 row 1072 on columns: df1.DAT_DATETIME + df1.NUM_DEVICE_ID_SENCROP and df2.DAT_MESURE + df2.NUM_DEVICE_ID
But with panda merge I get only NAN values. Why please? Thanks.
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
Solution | Source |
---|