'tensorflow load data: bad marshal data

I want to load FaceNet in Keras but I am getting errors. the modal facenet_keras.h5 is ready but I can't load it.

you can get facenet_keras.h5 from this link:

https://drive.google.com/drive/folders/1pwQ3H4aJ8a6yyJHZkTwtjcL4wYWQb7bn

My tensorflow version is:

tensorflow.__version__

'2.2.0'

and when i want to load data:

from tensorflow.keras.models import load_model
load_model('facenet_keras.h5')

get this error:

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-6-2a20f38e8217> in <module>
----> 1 load_model('facenet_keras.h5')

~/.local/lib/python3.8/site-packages/tensorflow/python/keras/saving/save.py in load_model(filepath, custom_objects, compile)
    182     if (h5py is not None and (
    183         isinstance(filepath, h5py.File) or h5py.is_hdf5(filepath))):
--> 184       return hdf5_format.load_model_from_hdf5(filepath, custom_objects, compile)
    185 
    186     if sys.version_info >= (3, 4) and isinstance(filepath, pathlib.Path):

~/.local/lib/python3.8/site-packages/tensorflow/python/keras/saving/hdf5_format.py in load_model_from_hdf5(filepath, custom_objects, compile)
    175       raise ValueError('No model found in config file.')
    176     model_config = json.loads(model_config.decode('utf-8'))
--> 177     model = model_config_lib.model_from_config(model_config,
    178                                                custom_objects=custom_objects)
    179 

~/.local/lib/python3.8/site-packages/tensorflow/python/keras/saving/model_config.py in model_from_config(config, custom_objects)
     53                     '`Sequential.from_config(config)`?')
     54   from tensorflow.python.keras.layers import deserialize  # pylint: disable=g-import-not-at-top
---> 55   return deserialize(config, custom_objects=custom_objects)
     56 
     57 

~/.local/lib/python3.8/site-packages/tensorflow/python/keras/layers/serialization.py in deserialize(config, custom_objects)
    103     config['class_name'] = _DESERIALIZATION_TABLE[layer_class_name]
    104 
--> 105   return deserialize_keras_object(
    106       config,
    107       module_objects=globs,

~/.local/lib/python3.8/site-packages/tensorflow/python/keras/utils/generic_utils.py in deserialize_keras_object(identifier, module_objects, custom_objects, printable_module_name)
    367 
    368       if 'custom_objects' in arg_spec.args:
--> 369         return cls.from_config(
    370             cls_config,
    371             custom_objects=dict(

~/.local/lib/python3.8/site-packages/tensorflow/python/keras/engine/network.py in from_config(cls, config, custom_objects)
    984         ValueError: In case of improperly formatted config dict.
    985     """
--> 986     input_tensors, output_tensors, created_layers = reconstruct_from_config(
    987         config, custom_objects)
    988     model = cls(inputs=input_tensors, outputs=output_tensors,

~/.local/lib/python3.8/site-packages/tensorflow/python/keras/engine/network.py in reconstruct_from_config(config, custom_objects, created_layers)
   2017   # First, we create all layers and enqueue nodes to be processed
   2018   for layer_data in config['layers']:
-> 2019     process_layer(layer_data)
   2020   # Then we process nodes in order of layer depth.
   2021   # Nodes that cannot yet be processed (if the inbound node

~/.local/lib/python3.8/site-packages/tensorflow/python/keras/engine/network.py in process_layer(layer_data)
   1999       from tensorflow.python.keras.layers import deserialize as deserialize_layer  # pylint: disable=g-import-not-at-top
   2000 
-> 2001       layer = deserialize_layer(layer_data, custom_objects=custom_objects)
   2002       created_layers[layer_name] = layer
   2003 

~/.local/lib/python3.8/site-packages/tensorflow/python/keras/layers/serialization.py in deserialize(config, custom_objects)
    103     config['class_name'] = _DESERIALIZATION_TABLE[layer_class_name]
    104 
--> 105   return deserialize_keras_object(
    106       config,
    107       module_objects=globs,

~/.local/lib/python3.8/site-packages/tensorflow/python/keras/utils/generic_utils.py in deserialize_keras_object(identifier, module_objects, custom_objects, printable_module_name)
    367 
    368       if 'custom_objects' in arg_spec.args:
--> 369         return cls.from_config(
    370             cls_config,
    371             custom_objects=dict(

~/.local/lib/python3.8/site-packages/tensorflow/python/keras/layers/core.py in from_config(cls, config, custom_objects)
    988   def from_config(cls, config, custom_objects=None):
    989     config = config.copy()
--> 990     function = cls._parse_function_from_config(
    991         config, custom_objects, 'function', 'module', 'function_type')
    992 

~/.local/lib/python3.8/site-packages/tensorflow/python/keras/layers/core.py in _parse_function_from_config(cls, config, custom_objects, func_attr_name, module_attr_name, func_type_attr_name)
   1040     elif function_type == 'lambda':
   1041       # Unsafe deserialization from bytecode
-> 1042       function = generic_utils.func_load(
   1043           config[func_attr_name], globs=globs)
   1044     elif function_type == 'raw':

~/.local/lib/python3.8/site-packages/tensorflow/python/keras/utils/generic_utils.py in func_load(code, defaults, closure, globs)
    469   except (UnicodeEncodeError, binascii.Error):
    470     raw_code = code.encode('raw_unicode_escape')
--> 471   code = marshal.loads(raw_code)
    472   if globs is None:
    473     globs = globals()

ValueError: bad marshal data (unknown type code)

thank you.



Solution 1:[1]

The possible solutions to this error are shown below:

  1. The Model might have been built and saved in Python 2.x and you might be using Python 3.x. Solution is to use the same Python Version using which the Model has been Built and Saved.

  2. Use the same version of Keras (and, may be, tensorflow), on which your Model was Built and Saved.

  3. The Saved Model might contain Custom Objects. If so, you need to load the Model using the code,

    new_model = tf.keras.models.load_model('model.h5', custom_objects={'CustomLayer': CustomLayer})

  4. If you can recreate the architecture (i.e. you have the original code used to generate it), you can instantiate the model from that code and then use model.load_weights('your_model_file.hdf5') to load in the weights. This isn't an option if you don't have the code used to create the original architecture.

For more details, please refer this Github Issue. For more details regarding Saving and Loading the Model with Custom Objects, please refer this Tensorflow Documentation and this Stack Overflow Answer.

Solution 2:[2]

I change python version(3.10 to 3.7) and its solved for me.

Sources

This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.

Source: Stack Overflow

Solution Source
Solution 1 Tensorflow Support
Solution 2 Salimi_Erfan