'Tensorflow module is not found when running a code on AWS Deep Learning AMI (p2.xlarge)
when running the following code from a jupyter notebook in the ec2 instance:
from keras.datasets import imdb
the following error message pops out:
ModuleNotFoundError: No module named 'tensorflow'
I tried installing tensorflow using pip / conda e.g. pip install tensorflow
but the error still persists.
Aren't these packages pre-installed already in the deep learning instance and why does it not let me install it on my own?
Solution 1:[1]
The issue is resolved. It was caused by running the jupyter notebook server in the wrong environment of the instance (in base instead of tensorflow_p37).
Solution 2:[2]
Once start the service what is your option from the list, they bundle with components below you select it correctly you run it, there is a speeches recognition features match or elastics match.
=============================================================================
__| __|_ )
_| ( / Deep Learning AMI (Ubuntu 18.04) Version 40.0
___|\___|___|
=============================================================================
Welcome to Ubuntu 18.04.5 LTS (GNU/Linux 5.4.0-1037-aws x86_64v)
Please use one of the following commands to start the required environment with the framework of your choice:
for AWS MX 1.7 (+Keras2) with Python3 (CUDA 10.1 and Intel MKL-DNN) _______________________________ source activate mxnet_p36
for AWS MX 1.8 (+Keras2) with Python3 (CUDA + and Intel MKL-DNN) ___________________________ source activate mxnet_latest_p37
for AWS MX(+AWS Neuron) with Python3 ___________________________________________________ source activate aws_neuron_mxnet_p36
for AWS MX(+Amazon Elastic Inference) with Python3 _______________________________________ source activate amazonei_mxnet_p36
for TensorFlow(+Keras2) with Python3 (CUDA + and Intel MKL-DNN) _____________________________ source activate tensorflow_p37
for Tensorflow(+AWS Neuron) with Python3 _________________________________________ source activate aws_neuron_tensorflow_p36
for TensorFlow 2(+Keras2) with Python3 (CUDA 10.1 and Intel MKL-DNN) _______________________ source activate tensorflow2_p36
for TensorFlow 2.3 with Python3.7 (CUDA + and Intel MKL-DNN) ________________________ source activate tensorflow2_latest_p37
for PyTorch 1.4 with Python3 (CUDA 10.1 and Intel MKL) _________________________________________ source activate pytorch_p36
for PyTorch 1.7.1 with Python3.7 (CUDA 11.0 and Intel MKL) ________________________________ source activate pytorch_latest_p37
for PyTorch (+AWS Neuron) with Python3 ______________________________________________ source activate aws_neuron_pytorch_p36
for base Python3 (CUDA 10.0) _______________________________________________________________________ source activate python3
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
Solution | Source |
---|---|
Solution 1 | kabison33 |
Solution 2 | Martijn Pieters |