'to_date gives null on format yyyyww (202001 and 202053)
I have a dataframe with a yearweek column that I want to convert to a date. The code I wrote seems to work for every week except for week '202001' and '202053', example:
df = spark.createDataFrame([
(1, "202001"),
(2, "202002"),
(3, "202003"),
(4, "202052"),
(5, "202053")
], ['id', 'week_year'])
df.withColumn("date", F.to_date(F.col("week_year"), "yyyyw")).show()
I can't figure out what the error is or how to fix these weeks. How can I convert weeks 202001 and 202053 to a valid date?
Solution 1:[1]
Dealing with ISO week in Spark is indeed a headache - in fact this functionality was deprecated (removed?) in Spark 3. I think using Python datetime utilities within a UDF is a more flexible way to do this.
import datetime
import pyspark.sql.functions as F
@F.udf('date')
def week_year_to_date(week_year):
# the '1' is for specifying the first day of the week
return datetime.datetime.strptime(week_year + '1', '%G%V%u')
df = spark.createDataFrame([
(1, "202001"),
(2, "202002"),
(3, "202003"),
(4, "202052"),
(5, "202053")
], ['id', 'week_year'])
df.withColumn("date", week_year_to_date('week_year')).show()
+---+---------+----------+
| id|week_year| date|
+---+---------+----------+
| 1| 202001|2019-12-30|
| 2| 202002|2020-01-06|
| 3| 202003|2020-01-13|
| 4| 202052|2020-12-21|
| 5| 202053|2020-12-28|
+---+---------+----------+
Solution 2:[2]
Based on mck's answer this is the solution I ended up using for Python version 3.5.2 :
import datetime
from dateutil.relativedelta import relativedelta
import pyspark.sql.functions as F
@F.udf('date')
def week_year_to_date(week_year):
# the '1' is for specifying the first day of the week
return datetime.datetime.strptime(week_year + '1', '%Y%W%w') - relativedelta(weeks = 1)
df = spark.createDataFrame([
(9, "201952"),
(1, "202001"),
(2, "202002"),
(3, "202003"),
(4, "202052"),
(5, "202053")
], ['id', 'week_year'])
df.withColumn("date", week_year_to_date('week_year')).show()
Without the use of the in 3.6 added '%G%V%u' I had to subtract a week from the date to get the correct dates.
Solution 3:[3]
The following will not use udf
, but instead, a more efficient vectorized pandas_udf
:
import pandas as pd
@F.pandas_udf('date')
def week_year_to_date(week_year: pd.Series) -> pd.Series:
return pd.to_datetime(week_year + '1', format='%G%V%u')
df.withColumn('date', week_year_to_date('week_year')).show()
# +---+---------+----------+
# | id|week_year| date|
# +---+---------+----------+
# | 1| 202001|2019-12-30|
# | 2| 202002|2020-01-06|
# | 3| 202003|2020-01-13|
# | 4| 202052|2020-12-21|
# | 5| 202053|2020-12-28|
# +---+---------+----------+
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
Solution | Source |
---|---|
Solution 1 | mck |
Solution 2 | |
Solution 3 | ZygD |