'Unable to read image text with python tesseract and OpenCV
I am trying read text from this
using Python with OpenCV. However, it is not able to read it.
import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
img=cv.imread(file_path,0)
img = cv.medianBlur(img,5)
ret,th1 = cv.threshold(img,127,255,cv.THRESH_BINARY)
th2 =cv.adaptiveThreshold(img,255,cv.ADAPTIVE_THRESH_MEAN_C,\
cv.THRESH_BINARY,11,2)
th3 = cv.adaptiveThreshold(img,255,cv.ADAPTIVE_THRESH_GAUSSIAN_C,\
cv.THRESH_BINARY,11,2)
titles = ['Original Image', 'Global Thresholding (v = 127)',
'Adaptive Mean Thresholding', 'Adaptive Gaussian Thresholding']
images = [img, th1, th2, th3]
for i in range(4):
plt.subplot(2,2,i+1),plt.imshow(images[i],'gray')
plt.title(titles[i])
plt.xticks([]),plt.yticks([])
plt.show()
anyway to do this?
Solution 1:[1]
Instead of working on the grayscale image, working on saturation channel of the HSV color space makes the subsequent steps easier.
img = cv2.imread(image_path_to_captcha)
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
s_component = hsv[:,:,1]
Next, apply a Gaussian blur of appropriate kernel size and sigma value, and later threshold.
blur = cv2.GaussianBlur(s_component,(7,7), 7)
ret,th3 = cv2.threshold(blur,127,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
Next, finding contours in the image above and preserving those above a certain area threshold in the black
image variable which will be used as mask later on.
contours, hierarchy = cv2.findContours(th3, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
black = np.zeros((img.shape[0], img.shape[1]), np.uint8)
for contour in contours:
if cv2.contourArea(contour) >600 :
cv2.drawContours(black, [contour], 0, 255, -1)
Using the black
image variable as mask over the threshold image
res = cv2.bitwise_and(th3, th3, mask = black)
Finally, applying morphological thinning to the above result
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5,5))
erode = cv2.erode(res, kernel, iterations=1)
The end result is not what you expect. You can try experimenting different morphology operations prior to drawing contours as well.
EDIT
You can perform distance transform on the above image and use the result:
dist = cv2.distanceTransform(res, cv2.DIST_L2, 3)
dst = cv2.normalize(dist, dst=None, alpha=0, beta=255,norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_8U)
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
Solution | Source |
---|---|
Solution 1 |