'How to add confusion matrix to my keras multiclass classifier?
fellow coders. I am trying to figure out ways to add a confusion matrix to the output of my Mobilenet-based multiclass classifier. Being a biologist with limited programming experience, I haven't been able to integrate any solution into my code. Any help?
Here is my code:
import os
from os.path import exists
import tensorflow as tf
import matplotlib.pyplot as plt
from tensorflow.keras.losses import categorical_crossentropy
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
Variables
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
BATCH_SIZE = 16
IMG_SIZE = (160, 160)
training_directory = "/content/drive/MyDrive/Microscopy Data/04112028_multiclass_maiden/Training/Actin"
validation_directory = "/content/drive/MyDrive/Microscopy Data/04112028_multiclass_maiden/Validation/Actin"
train_dataset = tf.keras.utils.image_dataset_from_directory(training_directory,
shuffle=True,
batch_size=BATCH_SIZE,
image_size=IMG_SIZE,
seed=42)
validation_dataset = tf.keras.utils.image_dataset_from_directory(validation_directory,
shuffle=True,
batch_size=BATCH_SIZE,
image_size=IMG_SIZE,
seed=42)
class_names = train_dataset.class_names
print( "class_names: " + str( class_names ) )
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
Functions
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
def huvec_model (image_shape=IMG_SIZE, data_augmentation = tf.keras.Sequential([ tf.keras.layers.RandomFlip('horizontal'), tf.keras.layers.RandomRotation(0.2), ])):
# def huvec_model (image_shape=IMG_SIZE, data_augmentation=data_augmenter()):
''' Define a tf.keras model for binary classification out of the MobileNetV2 model
Arguments:
image_shape -- Image width and height
data_augmentation -- data augmentation function
Returns:
Returns:
tf.keras.model
'''
input_shape = image_shape + (3,)
base_model = tf.keras.applications.MobileNetV2(input_shape=IMG_SHAPE,
include_top=False,
weights='imagenet')
base_model.trainable = False
inputs = tf.keras.Input(shape=input_shape)
x = data_augmentation(inputs)
x = preprocess_input(x)
x = base_model(x, training=False)
x = tf.keras.layers.GlobalAveragePooling2D()(x)
x = tf.keras.layers.Dropout(.2)(x)
prediction_layer = tf.keras.layers.Dense(units = len(class_names), activation='softmax')
outputs = prediction_layer(x)
model = tf.keras.Model(inputs, outputs)
return model
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
DataSet
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
AUTOTUNE = tf.data.experimental.AUTOTUNE
train_dataset = train_dataset.prefetch(buffer_size=AUTOTUNE)
preprocess_input = tf.keras.applications.mobilenet_v2.preprocess_input
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
: Model Initialize
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
IMG_SHAPE = IMG_SIZE + (3,)
base_model = tf.keras.applications.MobileNetV2(input_shape=IMG_SHAPE,
include_top=True,
weights='imagenet')
# base_model.summary()
model2 = huvec_model(IMG_SIZE)
base_model.trainable = True
# Let's take a look to see how many layers are in the base model
print("Number of layers in the base model: ", len(base_model.layers))
# Fine-tune from this layer onwards
fine_tune_at = 120
base_learning_rate = 0.01
for layer in base_model.layers[:fine_tune_at]:
layer.trainable = False
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
: Optimizer
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
optimizer = tf.keras.optimizers.Adam(learning_rate=0.1*base_learning_rate)
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
: Loss Fn
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
lossfn = tf.keras.losses.BinaryCrossentropy(from_logits=False)
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
: Model Summary
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
model2.compile(optimizer=optimizer, loss='sparse_categorical_crossentropy', metrics=[ 'accuracy' ])
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
: Training
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
history = model2.fit(train_dataset, validation_data=validation_dataset, epochs=5)
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
: Plotting Train and Validation Accuracy
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
acc = [0.] + history.history['accuracy']
val_acc = [0.] + history.history['val_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']
plt.figure(figsize=(8, 8))
plt.subplot(2, 1, 1)
plt.plot(acc, label='Training Accuracy')
plt.plot(val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.ylabel('Accuracy')
plt.ylim([min(plt.ylim()),1])
plt.title('Training and Validation Accuracy')
PS: I want to avoid one-hot-encoding.
Solution 1:[1]
You can use tf.math.confusion_matrix()
function to get confusion matrix for predict_class.
confusion_mtx = tf.math.confusion_matrix(
list(ds_test.map(lambda x, y: y)),
predict_class_label_number(test_data),
num_classes=len(label_names))
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
Solution | Source |
---|---|
Solution 1 | TFer |