'joblib.Memory and pandas.DataFrame inputs

I've been finding that joblib.Memory.cache results in unreliable caching when using dataframes as inputs to the decorated functions. Playing around, I found that joblib.hash results in inconsistent hashes, at least in some cases. If I understand correctly, joblib.hash is used by joblib.Memory, so this is probably the source of the problem.

Problems seem to occur when new columns are added to dataframes followed by a copy, or when a dataframe is saved and loaded from disk. The following example compares the inconsistent hash output when applied to dataframes, or the consistent results when applied to the equivalent numpy data.

import pandas as pd
import joblib


df = pd.DataFrame({'A':[1,2,3],'B':[4.,5.,6.], })
df.index.name='MyInd'
df['B2'] = df['B']**2
df_copy = df.copy()
df_copy.to_csv("df.csv")
df_fromfile = pd.read_csv('df.csv').set_index('MyInd')

print("DataFrame Hashes:")
print(joblib.hash(df))
print(joblib.hash(df_copy))
print(joblib.hash(df_fromfile))

def _to_tuple(df):
    return (df.values, df.columns.values, df.index.values, df.index.name)

print("Equivalent Numpy Hashes:")
print(joblib.hash(_to_tuple(df)))
print(joblib.hash(_to_tuple(df_copy)))
print(joblib.hash(_to_tuple(df_fromfile)))

results in output:

DataFrame Hashes:
4e9352c1ffc14fb4bb5b1a5ad29a3def
2d149affd4da6f31bfbdf6bd721e06ef
6843f7020cda9d4d3cbf05dfc47542d4
Equivalent Numpy Hashes:
6ad89873c7ccbd3b76ae818b332c1042
6ad89873c7ccbd3b76ae818b332c1042
6ad89873c7ccbd3b76ae818b332c1042

The "Equivalent Numpy Hashes" is the behavior I'd like. I'm guessing the problem is due to some kind of complex internal metadata that DataFrames utililize. Is there any canonical way to use joblib.Memory.cache on pandas DataFrames so it will cache based upon the data values only?

A "good enough" workaround would be if there is a way a user can tell joblib.Memory.cache to utilize something like my _to_tuple function above for specific arguments.



Sources

This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.

Source: Stack Overflow

Solution Source