'tape.gradient throws InvalidArgumentError: Input to reshape is a tensor with 1 values, but the requested shape has 400 [Op:Reshape]
When implementing an unsupervised learning algorithm, that has the goal of inferring a set of coordinates which follow a given angular two-point correlation function, I get an error with my custom gradient descent algorithm.
The loss function is basically the difference between the angular_tpcf of the output coordinates of the network and the goal correlation function. For this calculation, I need a Numpy function which I currently cannot translate into a TensorFlow function, I use the tf.py_function wrapper instead. When calculating the gradient of the loss, I get a strange error pointing to a faulty reshape of the gradient. The error is:
---------------------------------------------------------------------------
InvalidArgumentError Traceback (most recent call last)
/var/folders/9n/5rsrx6tx2jx4234dz2mgmqhc0000gn/T/ipykernel_27441/710230524.py in <module>
38 loss = tpcfloss(coords=yout, corgoal=corgoal)
39 #print(loss, model.trainable_variables)
---> 40 grad = tape.gradient(loss, model.trainable_variables) # Backpropagation
41 print(grad)
42 optimizer.apply_gradients(zip(grad, model.trainable_variables)) # Update network weights
/opt/homebrew/anaconda3/envs/train/lib/python3.9/site-packages/tensorflow/python/eager/backprop.py in gradient(self, target, sources, output_gradients, unconnected_gradients)
1082 for x in nest.flatten(output_gradients)]
1083
-> 1084 flat_grad = imperative_grad.imperative_grad(
1085 self._tape,
1086 flat_targets,
/opt/homebrew/anaconda3/envs/train/lib/python3.9/site-packages/tensorflow/python/eager/imperative_grad.py in imperative_grad(tape, target, sources, output_gradients, sources_raw, unconnected_gradients)
69 "Unknown value for unconnected_gradients: %r" % unconnected_gradients)
70
---> 71 return pywrap_tfe.TFE_Py_TapeGradient(
72 tape._tape, # pylint: disable=protected-access
73 target,
/opt/homebrew/anaconda3/envs/train/lib/python3.9/site-packages/tensorflow/python/eager/backprop.py in _gradient_function(op_name, attr_tuple, num_inputs, inputs, outputs, out_grads, skip_input_indices, forward_pass_name_scope)
157 gradient_name_scope += forward_pass_name_scope + "/"
158 with ops.name_scope(gradient_name_scope):
--> 159 return grad_fn(mock_op, *out_grads)
160 else:
161 return grad_fn(mock_op, *out_grads)
/opt/homebrew/anaconda3/envs/train/lib/python3.9/site-packages/tensorflow/python/ops/array_grad.py in _ReshapeGrad(op, grad)
781 def _ReshapeGrad(op, grad):
782 return [
--> 783 array_ops.reshape(
784 _IndexedSlicesToTensorNoWarning(grad), array_ops.shape(op.inputs[0])),
785 None
/opt/homebrew/anaconda3/envs/train/lib/python3.9/site-packages/tensorflow/python/util/dispatch.py in wrapper(*args, **kwargs)
204 """Call target, and fall back on dispatchers if there is a TypeError."""
205 try:
--> 206 return target(*args, **kwargs)
207 except (TypeError, ValueError):
208 # Note: convert_to_eager_tensor currently raises a ValueError, not a
/opt/homebrew/anaconda3/envs/train/lib/python3.9/site-packages/tensorflow/python/ops/array_ops.py in reshape(tensor, shape, name)
194 A `Tensor`. Has the same type as `tensor`.
195 """
--> 196 result = gen_array_ops.reshape(tensor, shape, name)
197 tensor_util.maybe_set_static_shape(result, shape)
198 return result
/opt/homebrew/anaconda3/envs/train/lib/python3.9/site-packages/tensorflow/python/ops/gen_array_ops.py in reshape(tensor, shape, name)
8392 return _result
8393 except _core._NotOkStatusException as e:
-> 8394 _ops.raise_from_not_ok_status(e, name)
8395 except _core._FallbackException:
8396 pass
/opt/homebrew/anaconda3/envs/train/lib/python3.9/site-packages/tensorflow/python/framework/ops.py in raise_from_not_ok_status(e, name)
6939 message = e.message + (" name: " + name if name is not None else "")
6940 # pylint: disable=protected-access
-> 6941 six.raise_from(core._status_to_exception(e.code, message), None)
6942 # pylint: enable=protected-access
6943
/opt/homebrew/anaconda3/envs/train/lib/python3.9/site-packages/six.py in raise_from(value, from_value)
InvalidArgumentError: Input to reshape is a tensor with 1 values, but the requested shape has 400 [Op:Reshape]
The Code for the network is:
#definition of the model
def define_model(outputdim):
inputlay = keras.layers.Input(shape=(1000,))
#some inputlayers
x = keras.layers.Dense(128,activation='relu')(inputlay)
x = keras.layers.Dense(128,activation='relu')(x)
x = keras.layers.Dense(2*outputdim,activation='relu')(x)
output = keras.layers.Reshape((outputdim,2))(x)
return keras.Model(inputlay,output)
#some parameters
nclus = 200
n_epochs = 10
n_batches = 10
randomsforwthetadec = 90*np.random.random((nclus,))
randomsforwthetara = 180*np.random.random((nclus,))
randomsforwt = np.vstack((randomsforwthetara,randomsforwthetadec)).T
thetabinning = np.linspace(0,10,36)
model = define_model(nclus)
#definition of the loss function
def tpcfloss(coords,corgoal):
#coords = coords.numpy()
return keras.backend.sum(keras.backend.abs(tf.py_function(hmock.angular_tpcf,[coords,thetabinning,randomsforwt],tf.float64)-tf.convert_to_tensor(corgoal[1:36])))
#setting up training
optimizer = tf.keras.optimizers.Adam()
loss_train = np.zeros(shape=(n_epochs,), dtype=np.float32)
loss_val = np.zeros(shape=(n_epochs,))
#training loop
for epoch in range(n_epochs):
epoch_loss_avg = tf.keras.metrics.Mean() # Keeping track of the training loss
print('==== Epoch #{0:3d} ===='.format(epoch))
for batch in range(n_batches):
xin = np.random.random((1,1000))
with tf.GradientTape() as tape: # Forward pass
yout = model(xin, training=True)
#print(yout)
loss = tpcfloss(coords=yout, corgoal=corgoal)
#print(loss, model.trainable_variables)
grad = tape.gradient(loss, model.trainable_variables) # Backpropagation
print(grad)
optimizer.apply_gradients(zip(grad, model.trainable_variables)) # Update network weights
epoch_loss_avg(loss)
loss_train[epoch] = epoch_loss_avg.result()
print('---- Training ----')
print('Loss = {0:.3f}'.format(loss_train[epoch]))
Thank you in advance to any and all answers!
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
Solution | Source |
---|