'The method np_utils.to_categorical give me an error
np_utils.to_categorical Keras method give me an error when i gived it a a vector of [962] element which contain 3 classes [1,1,1,...,2,2,2,...3,3,3].
The used code:
from keras.utils import np_utils
Y_train = np_utils.to_categorical(testY, 3)
and i get this error:
---------------------------------------------------------------------------
IndexError Traceback (most recent call last)
<ipython-input-24-9b7d3117ff6a> in <module>()
1 print(trainY[720])
----> 2 Y_train = np_utils.to_categorical(testY, 3)
3 print(Y_train[100])
/usr/local/lib/python3.6/dist-packages/keras/utils/np_utils.py in to_categorical(y, num_classes, dtype)
32 n = y.shape[0]
33 categorical = np.zeros((n, num_classes), dtype=dtype)
---> 34 categorical[np.arange(n), y] = 1
35 output_shape = input_shape + (num_classes,)
36 categorical = np.reshape(categorical, output_shape)
IndexError: index 3 is out of bounds for axis 1 with size 3
Solution 1:[1]
As mentioned in the method documentation:
Arguments
y: class vector to be converted into a matrix (integers from 0 to num_classes). num_classes: total number of classes.
So when you pass num_classes=3
it expects elements of y to be in {0, 1, 2}
.
You could simply convert your data to this zero-based format:
Y_test = np_utils.to_categorical(testY - 1, 3)
Solution 2:[2]
Please attempt this and it works for me-
y_train =keras.utils.to_categorical(y_train, num_classes, dtype='float32')
y_test = keras.utils.to_categorical(y_test, num_classes, dtype='float32')
Sources
This article follows the attribution requirements of Stack Overflow and is licensed under CC BY-SA 3.0.
Source: Stack Overflow
Solution | Source |
---|---|
Solution 1 | Community |
Solution 2 |